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Abstract-An analysis using Laplace transformations is made for the transient temperature distribution 
and surface heat flux when a plate which is convectively cooled from below has a fluid passing over it 
whose free stream temperature at the plate leading edge varies arbitrarily with time, and when the 
plate’s thermal response is coupled to the fluid via the conjugation conditions at the interface. 

First the solution for a step function is found and then generalized to handle arbitrary fluid temperature 
variation with time. A simple to use approximate method is presented for the most general case. For 

comparison, quasi-steady results are also derived. 

NOMENCLATURE 

b, thickness of plate; 

C P’ specific heat; 

erf, error function; 

F, F:‘, F[, Ff, surface heat flux functions defined by 

equations (23) through (26); 
h C, heat-transfer coefficient between bottom 

of plate and coolant; 

1, index; 

i’ erfc[z], first repeated integral ofthe error function 

= s m 

erfc[o] du; 
z 

index; 
thermal conductivity of fluid moving over 

top of plate; 
Laplace transform parameter; 
nondimensional surface heat flux defined 
by equation (11); 

surface heat flux; 

= P,C,,,blk~; 
Laplace transform parameter; 
temperature; 
coolant temperature; 

temperature just before and after, 

respectively, a step change in temperature 
at time ti; 

fluid temperature at x = 0 in the ultimate 
steady state; 
instantaneous fluid temperature at x = 0; 

*Associate Professor of Mechanical Engineering, Univer- 
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ASEE-NASA Resident Research Fellow at the Lewis 
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4 
40, 

45 - 11, 

X, 

Y, 

Y, 

time; 

free stream velocity; 
unit step function, equals 0 for ‘t < 1, and 

+lfors>l; 

space coordinate along plate; 

;JW 1 d’ ccfx non lmensional y coordinate; 

space coordinate perpendicular tq plate. 

Greek symbols 

a/, thermal diffusivity of fluid; 
6 f, thermal boundary-layer thickness ; 

8, = J(x/a/u,)/2r, coupling parameter; 

0, = T- To, temperature excess; 

4 dummy variable for z; 

5, dummy variable for x; 

Pt mass density; 

gwr = T,- r,; 

ACT;, , ACT;, , A&, temperature functions defined by 

~.x=o, 
7, 

71, 

Subscripts 

c, 

fY 
9% 
W, 

kquations (20) to (22); 
= T,=,- T,; 

= u, t/x, nondimensional time; 
nondimensional time at end of linearly 
increasing fluid temperature; 
zz z - 1. shifted nondimensional time. 

coolant conditions below plate; 
properties of fluid passing over the plate; 
quasi-steady conditions; 
plate condition. 
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INTRODUCTION 

THIS study of the transient temperature distribution 
and surface heat flux, between a plate cooled from 

below and interacting with a fluid passing over it with 
a time varying temperature at the plate leading edge, 
was instigated by the transient induced in a gas turbine 

blade or vane when the turbine inlet temperature 
changes because of start-up or shut-down or simply 
as a result of a change in power level when operating. 

The results are also thought applicable to other com- 
ponents of both jet and rocket engines. to portions of 
liquid metal cooled nuclear reactors. and to heat 

exchangeis, the transient response of a recuperative 
exchanger, and the transient and periodic unsteady 

response of a regenerative exchanger. 
Many previous investigations [l--12] attack the 

problem of the transient heat transfer initiated by a 

step change in the wall temperature or some other 

controlled change in the temperature of a surface over 
which a fluid is passing. Characteristic of the step 
change in the wall temperature is the large surface heat 

fluxes attained in the one-dimensional conduction 
phase of the problem which occurs before any of the 
fluid which was at x = 0 at t = 0 reaches any point 

of interest on the plate. Solutions for step changes in 
the plate surface heat flux have also been obtained in 
many of these investigations. Additionally, in all these 

works, the plate boundary condition used was a pure 

function of time and, hence, did not vary with position 
on the plate, and the velocity field was steady. 

Reference [13] among others, treats the transient 
heat transfer process induced by a time varying velocity 
field. 

Reference [14], in connection with the dynamic 
response of heat exchangers, uses a quasi-steady 

analysis and Laplace transforms to solve the transient, 
in a circular tube and the fluid flowing through it, 
caused by time dependent generation in the tube wall. 

Chambre [ 151 used Laplace transformations to solve 
for the heat-transfer response of a plate, insulated on 
its bottom surface, with a fluid passing over its upper 

surface with a slug flow velocity profile, and the plate 
containing time dependent heat sources which are 
turned on at time t = 0. Proper consideration was 
given to the mutual coupling between the temperature 

fields of the fluid and plate by utilizing the con- 
jugation conditions, continuity of temperature and 
heat flux, at the interface between the plate and the 
fluid. 

In the references mentioned so far, the transient 
convection heat transfer is caused by either a controlled 
change in the thermal condition of the solid or a con- 
trolled change in the velocity field as opposed to 
prescribed changes in the fluid temperature field. 
Konopliv and Sparrow [16] use Laplace transforms 

and series methods to deal with the case of Stokesian 
flow about a sphere when the fluid environment tem- 
perature changes abruptly. Their analysis handles the 
situation of constant sphere surface temperature and 
also the conjugate problem where the temperature of 
the entire sphere is lumped in the space coordinates 

and can vary with time as a result of its interaction 
with the fluid. Inouye and Yoshinaga [17] use an 
approximate integral method due to Liepmann on two 
problems of transient heat transfer at a stagnation 
point due to a sudden change in free stream tem- 

perature. Their first problem considers an isothermal 
surface suddenly subjected to a free stream temperature 
change. Because all of the fluid reaches the new tem- 

perature instantly, this is the same as the problem of 
abruptly changing the surface temperature at a stag- 
nation point which was dealt with earlier by Sparrow 

[l] and Chao and Jeng [S]. Their second problem, 

however, considers a thin flat plate with its rear surface 
insulated when the temperature of the stagnation flow 
is abruptly raised. Now the problem is a conjugate 

one and their approximate integral solution yields 
plate temperature and heat-transfer coefficient as a 

function of time and a parameter which is, basically, 
a measure of the plate’s thermal capacity. They remark 
that their solution and a quasi-steady solution are 

very close for typical plate fluid combinations, such as 
an iron plate and air. Lyman [18] analyzes transient 
heat transfer at a stagnation point due to an abrupt 

change in the free stream temperature at the edge of 
a thermal boundary layer when the solid forming the 
stagnation point is either semi-infinite, or of a finite 

thickness with an insulated lower surface. Until the 

thermal disturbance propagates from the outer edge 
of the thermal boundary layer to the solid, the solid 

does not participate in the energy transfer process. An 
important result is the dimensionless transit time, the 
time needed before the wall feels the change in free 
stream temperature, as a function of the thermal 
boundary-layer thickness. For times greater than this, 

the conjugate problem involving the coupled response 
of the wall material and the fluid is solved for the 

semi-infinite wall and then, by using small time and 
large time solutions, for the finite thickness wall in- 

sulated on its lower surface. One of the interesting 
observations of this solution is the absence of the 
infinite, and very large values of heat flux at short 
times which occur when the wall temperature is 
changed abruptly. The reason for this, of course, 
is the transit time required before the solid can feel 
the effect of the abrupt change of the free stream 
temperature which occurred at the edge of the thermal 
boundary layer. This time allows the temperature 
profiles in the fluid to become smooth and continuous 
by the time any of the heated fluid reaches the solid 
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wall. Lyman also presents the appropriate quasi- 

steady solutions and notes that when the fluid is air 

and the solid has thermal properties of glass or 

aluminum, the simpler quasi-steady solution suffices. 

Landram [19] works the problem of wall-to-fluid heat 
transfer in turbulent tube flow with an inlet tempera- 
ture prescribed as a function of time. His analysis, 
using Laplace transforms, employs a constant quasi- 
steady heat-transfer coefficient, and the results are for 
tube walls which are semi-infinite in thickness. Hence, 
it is a short time analysis for finite thickness tube 
walls. Graphs of response curves are presented for the 

case of a step change in the inlet temperature. In [20] 
Zargary and Brock derive an integral equation for the 

fluid temperature at the interface, when fluid is flowing 
through a pipe whose outside walls are insulated and 
a transient is initiated by virtue of a step change in 
the fluid inlet temperature. However, no solutions to 

the integral equation are presented. Sparrow and 

DeFarias [21] solve, in an exact fashion, the unsteady 
problem of a fluid flowing, in a steady laminar slug 
flow fashion, between two parallel plates with insulated 

outer surfaces when the fluid inlet temperature varies 
sinusoidally with time. When axial conduction is 

neglected in the plate and its temperature is lumped 
in the transverse direction, the energy balance for the 
plate in this problem becomes a boundary condition 

for the fluid. For the ultimate periodic unsteady state 
(initial condition has been “forgotten”), they find an 

exact analytical solution for the temperature, and the 
local Nusselt numbers. The results are compared to 
quasi-steady solutions employing a time independent 
heat-transfer coefficient and criteria are evolved for the 

range of validity of the quasi-steady solution. 
The present work concerns itself with the analytical 

prediction of the transient heat transfer between a 
fluid, flowing in a laminar fashion, and the plate over 
which it flows. The plate’s lower surface is exposed 
to a coolant at known temperature, T,, and with a 

known surface coefficient of heat transfer, h,, between 
the coolant and the lower plate surface. Hence, the 
insulated lower surface case is included since it cor- 

responds to the degenerate situation where h, = 0. 
Changes in the fluid temperature with time at the 
plate leading edge give rise to the transient in the fluid 

and the plate. Since the plate temperature is not 
specified, a priori, the transient temperature distri- 
bution in the plate and in the fluid passing over it are 
mutually coupled and this results in a conjugate prob- 
lem. The governing equations are then solved by two 
successive Laplace transformations for the case of a 
step change in the fluid temperature at the leading 
edge. Use of Duhamel’s Theorem generalizes this 
result for arbitrary time varying fluid temperature. A 
solution is then found for the case of linear fluid tem- 

perature variation with time and it is shown how this 
solution and the step function solution can be used to 

approximate the response, to arbitrary temperature 

variation of the fluid, to any degree of accuracy using 
only tabulated elementary functions; namely, the error 
function and the first repeated integral of the error 
function. Quasi-steady solutions, not employing the 
assumption of a time independent heat-transfer coeffi- 

cient, are also obtained and compared to the exact 
solutions. 

ANALYSIS 

The physical situation is a flat plate of thickness b 

which has its lower surface exposed to a coolant at 
constant temperature T, with surface coefficient of heat 

transfer h, and the fluid flow over the top of the plate 
is steady and laminar. The following idealizations are 
made to effect an exact analytical solution. The fluid 

flow is low speed, constant property, and of the two- 
dimensional planar boundary layer type with a slug 
flow velocity profile. In addition, the thermal properties 

of the plate are constant, the plate temperature is 
lumped in the y coordinate direction, and axial con- 

duction neglected. First the fundamental solution for 
a step change in fluid temperature at x = 0 is sought. 
Initially, the plate and fluid are both at the coolant 

temperature T,, when suddenly the fluid temperature 

at x = 0, TX=,, is changed to the value T, and sub- 
sequently held constant. Defining 0 = T-T,, the 

governing partial differential equation and boundary 
conditions for the fluid temperature distribution 

become, 

ae ae a28 
t+Umx=uf;jj;i 

t=O, x>O, y>O, Q=Q,=T,-To (2) 

x=0, t>O, y>O, Q=O (3) 

Y-‘W, t > 0, x > 0, Q is finite. (4) 

Now apply the energy balance to a control volume of 
plate b by dx and noting that the plate temperature 
T,,,(x, t) must equal the fluid temperature at y = 0 

because of the assumption of a lumped plate tempera- 
ture, the equation for the plate becomes a boundary 
condition on the fluid; namely, 

y=O, t>O, x>O, rg+F(Q-Q,)=g (5) 
f 

where r = pwC,,b/kf. To solve equation (1) and its 
associated side conditions (2) through (5), a Laplace 
transform with respect to time t and then with respect 
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to x was applied to equations (l))(5). So using 

I 

m 
g= 0 e-P’dt 

0 

and 

s 

cc 
J= f?eesXdx 

0 

equations (1) to (5) become 

(6) 

y+a, 8 is finite (7) 

y = o, ;= ($+rp)&&(;+$-). (8) 

The details of the solution of equation (6) subject to 
(7) and (8) and the inverse iransformation of the result, 

first with respect to s, and then with respect to p is 
given in [22]. Only the result is presented here employ- 
ing the following nondimensional variables. 

T = u, t/x 

6 = J(x/afum)/2r. 

Thus the exact analytical solution for the nondimen- 

sional fluid temperature is, 

t= 1-u(z-1)[erf[Y]+e2~r+~*{erf[s(z-1)+~+Y] 
C 

- erf[q + YIII (9) 

where 

u(7 - 1) = 
I 

0 for z<l 

+l for r>l. 

The temperature response of the plate is found by 

setting Y = 0 in equation (9), giving 

0, 
-= 1-~(7-1)[e~‘{erf[~(5-l)+~]-erf[~]]]. (10) 
9C 

The local surface heat flux qW is put into nondimen- 
sional form by dividing it by the surface heat flux for 
an isothermal plate at 0, under the same conditions, 

see [23]. 

Qw = qw/kd4J(uml~a,-x). 

It can be easily seen that 

(11) 

Q 
w 

Performing the indicated operations on equation (9) 
yields the nondimensional surface heat flux. 

QW = 0 for 7: < 1 

Q,=exp(-[~?(7-1)~+2~~(~-l)]j 

+J(7c)~e’l’{erf[s(t-l)+r]-erf[rl]) 

for z > 1. (12) 

The response functions, equations (9) (10) and (12) 

were checked in a number of ways. First, instead of 
directly inverting from the second transformed plane 
and then operating on the result in the physical 

(x, y, t) plane to get equations (10) and (12), the wall 
temperature and heat flux were formed in the second 
transformed plane (p, s, y) and the results inverted 

giving equations (10) and (12) respectively, as it should. 
Secondly, it was verified that equation (9) satisfied 
equations (1) through (5) by direct substitution. Thirdly, 
some limiting cases were examined to insure agreement 
with physical reasoning. As h, + cc, p + co and this 

means, physically, that T, --+ T, and hence, 0, -+ 0, for 
all x and t. In addition QU, should approach unity. 
Letting r) + CC and utilizing L’Hospital’s Rule where 

necessary in equations (10) and (12) yields 0, + H, and 
QW + 1 as required. It is noted that r is a measure of 

the heat capacity of the plate. Hence, an infinite heat 
capacity plate (which would stay, therefore, at BC during 
a transient) corresponds to r + cc which means that 
the coupling parameter E + 0. Letting E + 0 in equa- 
tions (10) and (12) it is clear that 0, ---t 0, and QW --t 1 
as they should. 

Arhitraryjuid temperature variation at x = 0 
Possession of the fundamental solution for the tem- 

perature field in the moving fluid, equation (9), due to 
a step change in fluid temperature at x = 0, together 
with the linearity of equation (1) allows determination 
of the temperature function for arbitrary inlet tem- 

perature variation via Duhamel’s Theorem [24]. Al- 

though the entire temperature field can be found, it is 
usually only necessary to know the wall temperature 
and the surface heat flux. In addition, some compact- 
ness of form may be realized by defining a shifted 
nondimensional time C$ as, 

@=1-l. (13) 

Also defining for convenience, 

cW = T,-T, (14) 

crXzo = T,=,(r)-T,. (15) 

Duhamel’s Theorem gives, for arbitrary variations of 
fluid temperature at x = 0, as the solution for the wall 
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temperature excess, 

6, = eq2 s 0 
x vdi. (16) 

For the surface heat flux, for arbitrary time variation 
of the fluid at x = 0, application of Duhamel’s Theorem 
yields, 

=- s ‘(exp{-[sZ(~-~)2+2Ve($-~)11 
0 

+J(n)~ev'{erf[44-4 +Vl-erf[IllJ) 

da,=o(l) 
x didl. (17) 

In equations (16) and (17) it is important to note that 
i is a dummy variable for r not for 4. The #J in the 
upper limit of the integral is a result of the unit step 
function u(r- 1) in the original solution for the step 
change in fluid temperature. 

Linearjuid temperature variation at x = 0 
The case of the fluid temperature at x = 0 varying 

linearly with time (a ramp in fluid temperature at x = 0) 
is of special interest for two reasons. First, experi- 
mental data show that the turbine inlet temperature 
of a gas turbine engine varies in an approximately 
linear fashion with time during startup, shutdown, and 
power level changes (accelerations or decelerations). 
Second, for many fluid temperature variations with 
time at x = 0, the integrations indicated in equations 
(16) and (17) cannot be made analytically to yield simple 
functions. However, for the linear variation of fluid 
temperature at x = 0, the ramp, the integration can 
be made and yields simple functions. As shown in [25], 
and others, a fairly arbitrary disturbance function of 
time can be approximated well by a sequence of ramps 
or a sequence of ramps and steps. Thus the response 
to a generalized ramp in fluid temperature at x = 0 is 
sought. Mathematically, this disturbance function is 
given as, 

TX=,(t) = AiSBit, ti < t < tj. (18) 

Utilizing equation (15) gives, after rearrangement, 

crxco(i) = .4,+B’X&T,. 
kc 

Thus, 

da,zo(l) Bix 

dl =u,’ 
(19) 

After inserting equation (19) into (16) with the lower 
limit being 

ri = U,ti/X 

two integrations must be made, one for the case where 
ri < 1 < TV, and then a separate one for the case 
where 1 > rj. 

Thus, the temperature response of the wall to the 
generalized linear temperature variation of the fluid at 
x = 0 is given by 

A&, =~e”‘{a(~-ri)erfc[~]+i1erfc[a(4-rJ+ql 
m 

-i’ erfc[q]} 

for ri < 4 < 7j (20) 

and by 

A& =ze”‘{e(rj-rJerfc[n]+i’erfc[a(&~-ri)+g] 
m 

- i’ erfC[&(4-rj) +?I]} 

for 4 > 7j (21) 

i’ erfc refers to the first repeated integral of the error 
function [26]. In equations (20) and (21) the super- 
script r identifies the disturbance as a linear one, a 
ramp, while the subscript i refers to the time at which 
the ramp begins. For completeness, the generalized 
version of equation (10) as the response to a step which 
occurs at time ti is given below. 

Ati& = (T+-T-)efl’{erf[a($-ri)+n]-erf[n]} 

for 4 > 7i. (22) 

Defining for convenience the following heat flux 
parameter, 

4w 

F = k, J(a,ln~/x) 
(23) 

the surface heat flux response counterparts of equations 
(20) (21), and (22) become 

Fc = ~j(n)e*‘{$[erf[n]-etf[e($-rJ+q]] 

:qE(4-ri)erfC[7/] 

+~[i’erfC[~]-i’Crfc[&(~-7i)+~]]} 

for ri < 4 < rj (24) 

F[ = g&c) 
m 

X e~*{~[erf[&(~-7j)+~]-erf[E(~-ri)+~]] 

-q&(rj-ri)erfC[n] 

+~[i’elfC[&(~-Tj)+q]-i’CrfC[&(4-Zi)+q]]} 

for 4 > zj (25) 

Ff = -(T+ - T-){exp{ -[~~(~-7i)‘+2~~(~--~i)]} 

+J(~)~e”‘Cerf[~(~-7ti)+~1-erfC~11} 
for 4 > ri. (26) 
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Equations (20), (21). (22) (24) (25) and (26) when 
properly combined, give the heat-transfer response 

functions for any arbitrary combination of step changes 
and ramps in the fluid temperature at x = 0 and these 

functions can be used to approximate, to any desired 
accuracy, the heat transfer response to any fluid tem- 
perature as a function of time at x = 0. As an illus- 

tration, a case of interest in gas turbine cooling tech- 

nology will be utilized. Initially the temperature is T,, 
when at t = 0 the fluid temperature at x = 0 increases 
linearly with time to a final value of To at time ti and 

thereafter is held at To for all t. Surface temperature 
and heat flux are desired for this situation. After noting 
that z, = 0. rj = ~~ = u, tl/x, and 

BiX TO-T, _=__ 
U, 51 

the solution functions for the temperature of the plate 
can be written down directly from equations (20) and 

(21) as 

i’ erfc[.+ + ~1 - i’ erfc[s]} 

for 4 < z1 (27) 

ml erfc[q] + i’ erfc[+ + 111 

-i’erfc[s(#-ri)+q]} for 4 > 5i. (28) 

For the flux one uses equations (24) and (25) and then 
recognizing that some of the functions have already 

been written down, one obtains, with 

Qw=L 

K-T, 

for 4 < hi (29) 

where 

= e9*{erf[sf$+~]-erf[~]} (31) 
step 

and 

is equation (27) 

ramp 
is equation (28). 

Transient convection problems are often worked 
using the quasi-steady assumption because of the 
relative simplicity it affords. Basically the assumption 

is that the steady state relations are valid at each 
instant of time as long as instantaneous values of any 
time dependent quantities are used in the steady state 

relations. The quasi-steady analysis in [21] employed 
a time independent heat-transfer coefficient whose x 
dependency was determined according to that for a 

constant temperature surface. Actually, however, the 
heat-transfer coefficient does depend upon time even 
in the quasi-steady analysis, since the surface tempera- 
ture variation with x depends upon time. An expression 

for the quasi-steady surface heat flux in slug How over 
a surface with an arbitrary surface temperature dis- 
tribution in x can be found by specializing the elements 
of Lighthill’s derivation [27] to this simpler case. The 

result is 

An energy balance on the plate yields 

= +~&Hw). (32) 
n’ P.W 

Solving equation (32) by Laplace transforms, the quasi- 
steady wall temperature distribution and surface heat 
flux are, for a step change in the fluid tempera- 

ture at x = 0, 

%2 = 1 -e+{erf[sr+~]-erf[q]} (33) 
e 

QW,q.s. = exp-(s*z’ +~VET) 

+J(rr)~e~*{erf[ss+~]-erf[~]}. (34) 

DISCUSSION OF RESULTS 

Perhaps the most obvious feature of the heat-transfer 

response functions, equations (lo), (12), (27), and (29) 
is that the plate at position x does not respond to the 
fluid temperature change at Y = 0 and t = 0 until the 
front of fluid at s = 0 reaches the position s. This is 

a consequence of the neglect of axial conduction in 
both plate and fluid and the slug velocity profile. This 
phenomenon has been noted by many workers in con- 
junction with a step change in plate temperature and 
is discussed in detail by Siegel [Z]. One also notes, 
from inspection of equation (12), that the surface heat 
flux never attains the infinite or extremely large values 
(except at Y = 0) characteristically exhibited by the 
flux, in the one dimensional conduction regime, for a 
step change in the plate surface temperature. This is 
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in accordance with the results of Lyman [18] for the 
stagnation point problem as was explained in the 
Introduction of the present paper. 

Step change inJluid temperature 
From equations (10) and (12), response curves for 

the nondimensional wall temperature and surface heat 
flux are plotted in Figs. 1 and 2, respectively, for the 
step change in the fluid temperature. The parameter 
on these plots is 9 where q = 0 is viewed as h, = 0 and 

I I I I 
0 0.5 1.0 1.5 2.0 25 3.0 3.5 

<CT - 1) 

FIG. 1. Wall temperature response to step change 
in fluid temperature at x = 0 with fluid and plate 

initially at T,. 

FIG. 2. Surface heat flux response to step 
change in fluid temperature at x = 0 with fluid 

and plate initially at T,. 

therefore corresponds to an insulated lower plate 
surface (or a solid uncooled blade or vane in a gas 
turbine engine), and q = cc is viewed as caused by 
h, = co which corresponds to the plate always being 
at T,. More generally, a rearrangement of the definition 
of q gives, 

(&JI, 

V = k, J(&/n~,x) 

and thus 9 is a measure of the ratio of the coolant 
side surface coefficient to the surface coefficient which 
the top of the plate would experience in a slug flow 
if the plate was isothermal. This interpretation was the 
motivation for the values of r~ used in Figs. 1 and 2 
since an v of 1 could correspond to an impingement 
cooled turbine blade or vane. Study of Figs. 1 and 2 
indicate that both QW and l&/O, are within 5 per cent 
of their eventual steady state values if the time par- 
ameter satisfies the following inequality. 

~(7- 1) 2 2.05- 1.175~ for 0.25 < q < 1.0. (35) 

Equation (35) also provides the nondimensional time 
for q = 0 if one agrees to use the criterion that both 
QW and 0,/O, be less than 0.02. In addition equation 
(35) provides the following upper bound on the time 
to reach 5 per cent of steady state values when 9 > 1, 
namely E(Z- 1) = 0.875. 

Next the nature of the coupling parameter E and its 
influence on the surface heat flux are examined. Re- 
calling that, for laminar, steady slug flow over an 
isothermal plate, the thermal boundary-layer thickness 
has the form, 

6, * &rXI&). 

Inserting this into the definition of E and rearranging 
yields 

Hence E is a measure of the ratio of the thermal energy 
storage capacity per unit length of the boundary-layer 
fluid to that of the plate material. Hence for E-PO, 
viewed as being caused by a plate of very large thermal 
energy storage capacity, one would expect, on physical 
grounds, that the plate remains isothermal at T, regard- 
less of 9, and Q,,, = 1 for 7 > 1. Indeed this is what 
equation (12) indicates as does Fig. 3 which plots 
QW vs z - 1 for a number of different values of E and 
of q. For fixed q, it is seen that the larger the value 
of E, the shorter the duration of the transient. In the 
limit. as E + co, viewed as caused by a zero thermal 
energy storage capacity plate, equation (12) yields 

QW -+ (471)~ eV2 erfc[q] for 7 > 1 

that is, the plate responds instantly (at 7 = 1) to the 

new fluid temperature and there is only the simple 
transient due to the passage of the front of fluid that 
was at x = 0 at t = 0. This results from the fact that 
it is the thermal lag of the plate when interacting with 
the fluid which causes the major transient in the fluid 
and in this case the plate has no thermal lag at all. 
It can also be seen from Fig. 3 that the eventual steady 
state flux, at any 1, is independent of the coupling 
parameter E. This is expected physically by virtue of 
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FIG. 3. Influence of coupling parameter E on 
surface heat flux response to step change in 

fluid temperature at Y = 0. 

the fact that the plate temperature was lumped in the 
y direction and axial conduction was neglected. Hence 
the plate temperature field is coupled to that of the 

fluid only through the unsteady term in equation (5) 
and when %I& + 0 as t + m, the plate properties no 
longer appear in the solution functions. 

Linearjluid temperature variation 

Next is the case where the fluid and plate are initially 
at T, and then a linear variation (ramp) of fluid tem- 

perature at x = 0 occurs until it reaches T,, at which 
time, tl, the fluid at x = 0 is held at To for all time 

thereafter. The solutions for the wall temperature and 
surface heat flux are given by equations (27), (28) and 
(29), (30), respectively. It can be seen that an additional 
parameter, ETA, appears which was not present in the 

previously discussed step function solutions. t1 is the 
nondimensional time at which the ramp ends and thus 
&tl is a measure of the steepness of the ramp, the 

smaller ~7~ is, the steeper the ramp. Some represen- 
tative wall temperature and surface heat flux distri- 

butions are plotted in Figs. 4 through 7 for values of 
ETA indicative of those encountered in turbine blades 
and vanes. Plotted also on these figures for comparison 

FIG. 4. Wall temperature response to a linear 
change in fluid temperature at x = 0 from 
T, to To and comparison with the response to 

a step change. 
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FIG. 5. Wall temperature response to a linear 
change in fluid temperature at x = 0, comparison 
with response to a step change and with a quasi- 

steady solution. 
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FIG. 6. Surface heat flux response to a linear 
change in fluid temperature at x = 0 and com- 

parison with response to a step change. 
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FIG. 7. Surface heat flux response to a linear 
change in fluid temperature at x = 0 and com- 

parison with response to a step change. 
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purposes are the step function solutions. It is seen from 
Fig. 4, and even more graphically from Fig. 6, that 
the response to the steepest ramp shown, err = O-07, 
is approaching the response to a step function in fluid 
temperature as would be expected on physical grounds. 
However this is not the case for the less steep ramps 
and hence the step function solution should not be 
used as an approximation here even though equations 
(10) and (12) offer simplicity and computational ease 
relative to the correct equations (27) to (30). The 
transients in 0, and Q,,, induced by the ramp in fluid 
temperature are, as expected, less severe than those for 
a step in fluid temperature since the ramp causes the 
fluid temperature at x = 0 to reach To gradually 
rather than abruptly as the step requires. Inspection 
of Figs. 4-7 also leads to the conclusion that both 
QW and &/0, for the ramp in fluid temperature are 
within DO2 of their steady-state values for all values 
of r) and for &rr < 2.00 for 

E(T- 1) > 3’5. (36) 

From a more general standpoint, the curves of Figs. 
4-7 are viewed as graphs of the functions on the r.h.s. 
of equations (27) to (30) functions which are of use 
for other fluid temperature variations related to the 
basic ramp. For example, consider the case of steady- 
state operation with TX=,, = Tr where Ti # T, and then 
at time t = 0 the temperature, TX=,,, changes linearly 
with time from Tl to To in time tl and is held at To 
for all time thereafter. This mode of operation cor- 
responds to a change in power level from one steady 
state to a final, different, steady state. The heat-transfer 
response functions are desired. For this case, equations 
(16) and (17) yield, after noting that some of the 
required functions are already in hand, 

e+ erfc [q] 

(37) 

Qw = 

f(29) if 4 < r1 

f(30) if $J 2 ‘5r ’ (38) 

In the above equations, the notationf(27), for instance, 
means the value of the function given by equation (27). 
Since, as just discussed, these functions have been 
graphed in Figs. 4-7, one can use the figures directly 
in this transient which is more general than the one 
for which the figures were constructed. 

In all of the response curves presented so far, the 
wall temperature and the surface heat flux variation 
with time at different x positions has not been shown 

explicitly because of the fact that the nondimensional 
quantities, such as E, r and q, each depend upon X. 
So as to show more clearly the time dependency at 
different x locations and also to make a rough quali- 
tative comparison with the results of Sparrow and 
DeFarias [21], Figs. 8 and 9 are plotted for the r] = 0 
case. Here L is the plate length and a value of 
u, tl/L = lo4 has been chosen. In order to facilitate 
the qualitative comparison with [21], the quantity 
p/C,,, J(uf L/u,)/p, C,,, b which is analogous to their 
LX*, was taken to be 10W4. The inlet temperature in 
[21] is periodic with angular frequency w. For the 
ramp in fluid temperature at x = 0 in the present work, 
where tl is the duration of the ramp, the quantity l/tt, 
is roughly analogous to an angular frequency and 
2p,C,,,bJ(aIL/u,)/k/t,, is similar to the quantity b* 
of [21] and was taken to be 2.0. Figure 8 shows that 
at the downstream stations, the wall temperature lags 

0 0.5 1.0 1.5 2.0 2.5 3’0 
tfr, 

FIG. 8. Wall temperature response to a linear 
change in fluid temperature at x = 0 as a function 

of x and t. 

V I I 
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tv, 

FIG. 9. Surface heat flux response to a linear change 
in fluid temperature at x = 0 as a function of x and t. 

HMT Vol. Is. No. I-C 



34 JAMES SUCK 

that at the upstream stations as would be expected 
and is in qualitative agreement with [21]. The ampli- 
tude ofthe wall temperatureis, ofcourse, not attenuated 
because, unlike [21], hereall ofthe wall must eventually 

come to the same temperature To. It should also be 
noted, both in Figs. 8 and 9, that each curve has a 

different origin, other than t/t1 = 0 (except for the 
x/L = 0 case), due to the propagation time, previously 
discussed, needed before the front of fluid that was at 

x = 0 at t = 0 reaches any other X. This does not show 
in the figures due to the scale chosen and also because 

of the value of the parameter u, t,/L. 

Quasi-steady results 
In accordance with the description given in the 

Analysis Section, quasi-steady results were found for a 
number of cases. Two curves of Fig. 5 portray the 
quasi-steady wall temperature at q = 1.0, for both a 

step and a ramp in the fluid temperature at x = 0 vs 
time, while Fig. 10 gives quasi-steady surface heat 

flux as the dashed curves. The approach of the quasi- 
steady solution to the exact solution as E gets smaller 
is shown in Fig. 10. It can also be seen that the 

I 
lJ =I.0 

Step Ramp Cal= 0.90 

rExact r Exact 

/) Quasi-steady,/ Quasi-steady 
I',-< =o.m re=o.al 

,'Quasi-steady praedure ef ref.[Zl] 

I Ifi1 11 1 I I 
%0-0~5 0 o-5 1.0 1.5 2-o 2.5 3.0 

l (T 1) = cm 

FIG. 10. Comparison between various quasi- 
steady solutions and exact solutions for surface 
heat flux response to both a ramp and a step 

change in fluid temperature at x = 0. 

quasi-steady solution does not properly predict the 
nondimensional lag time, T = 1, which must expire 
before the plate can receive the information that the 
fluid temperature at x = 0 has changed. This was earlier 
noted by Lyman [18] in terms of his transit time. By 
examination of equations (33) and (34) it is seen that 
if ET, in the quasi-steady solution, is replaced by 
E(T - l), the quasi-steady solution becomes identical to 
the exact solution. Lyman [18] also found this same 
general behavior for his quasi-steady stagnation point 

solution. Hence, in an attack on the more complicated 
problem involving a nonslug velocity profile, one might, 
as a first approximation, utilize a quasi-steady solution 
with the equivalent of T replaced by T- 1, as long as 
axial conduction is still being neglected both in the 

plate and in the fluid. 
Computation shows the error between the quasi- 

steady solution and the exact solution will generally 

be less than 10 per cent, for both QW and f&,/H, for the 
step change in Buid temperature and for H,/I), for the 
ramp change in fluid temperature, if E < 0.02. A single 
general statement cannot be made for QW when the 

fluid temperature varies as the ramp because the error 
now depends upon whether T is less or greater than 

zi + 1 and other factors. Since the exact solution func- 
tions presented herein are in easy to use form, this 
information, concerning the validity of the quasi-steady 

analysis, can be used as a rough first estimate con- 
cerning the applicability of the quasi-steady approach 

to more complex transient problems of this same 
general type which involve nonslug velocity profiles, 

axial conduction in the plate. etc. 

In Fig. 10 is also shown, as dashed dot curves, a 
quasi-steady analysis performed according to the more 
straightforward procedure of [21] in which a time 
independent heat-transfer coefficient is used. The x 
dependency of this heat-transfer coefficient is taken to 
be that for an isothermal flat plate. For the step change 
in fluid temperature at .Y = 0. this simpler quasi-steady 

analysis is more in error than the one discussed 
previously. Because of the use of the isothermal heat- 
transfer coefficient, it cannot predict the eventual 
steady state flux since the plate, even in the steady 

state, is not isothermal unless E = 0 or r) = W. The 
comparison is more complicated for the ramp change 
in fuid temperature. Here the simpler quasi-steady 

analysis is better at short times and worse at the longer 
times and again predicts an erroneous steady state. 

Magnitude of E 
To gain an appreciation for its magnitude in some 

situations of possible interest, a few numerical values 
of the coupling parameter E were computed. Its value, 
of course, depends upon Y and conditions were gen- 

erally chosen to give reasonably large values of E. 
Thus for an airUdimet 700 system, E - 4 x lo- 5, for a 
water-aluminum system, s - 0.20, while for a liquid 
sodium-steel system, E - 1.00. The value of E for the 

air-Udimet 700 system is an illustration of the small 
values of e associated with air combined with almost 
any solid material for the plate. This agrees qualitatively 
with the statements in [17], [18], and [21] concerning 
analogous coupling parameters. Hence, the earlier 
statement on the validity of the quasi-steady results 
indicates that the quasi-steady analysis will suffice 
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when air is the heat transfer fluid, may be insufficient 

when the fluid is water, and certainly can be in serious 

error when the fluid is a liquid metal. 

CONCLUSION 

An exact analytical solution has been found for the 
transient surface heat flux and temperature distribution 
in the fluid, moving over a plate which is cooled from 

below, caused by a step change in the fluid temperature 
at the plate leading edge. The result has been gen- 
eralized to handle arbitrary fluid temperature variation 
with time. This is a straightforward procedure, com- 
putationally, when one approximates the fluid tem- 

perature variation by a sequence of ramps and/or 
steps for which all the needed response functions are 

presented herein. Results are also given for the time 
to reach steady state and for a criterion to determine 

the validity of a quasi-steady analysis. For air as the 
fluid, the quasi-steady analysis suffices for practically 
any plate material and plate thickness. 

The solution indicates, for the step change in fluid 
temperature at x = 0 and t = 0, the lack of the infinite 

and very large flux associated with step changes in 
the wall temperature. 
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TRANSFERT THERMIQUE INSTATIONNAIRE ENTRE UN FLUIDE, 
A TEMPERATURE VARIABLE DANS LE TEMPS, ET UNE PLAQUE: 

UNE SOLUTION EXACTE 

R&urn&-En utilisant la transformation de Laplace, on determine la distribution de tempkrature et le 
flux de chaleur pa&al quand une plaque, refroidie par convection g partir du bas, est l&h&e par un 
cfluide dont la tempkrature au loin varie arbitrairement avec le temps et quand la ritponse thermique 
de la plaque est coupICe au fluide par les conditions & l’interface. 
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La solution d’abord donnte pour une fonction ichelon est ensuite gCn&aliske au cas d’une variation 
arbitraire de la tempkrature du fluide en fonction du temps. Une mkthode approchCe, simple i utiliser, 
est pr&ent&e pour le cas le plus genbral. Pour comparaison, on donne aussi les resultats du 

probl6me quasistationnaire. 

INSTATIONARER W.&RMEUBERGANG ZWISCHEN EINEM FLUID 
MIT ZEITLICH VERANDERLICHER TEMPERATUR UND EINER PLATTE: 

EINE EXAKTE LOSUNG 

Zmammenfassung-Mit Hilfe der Laplace-Transformation wird die zeitliche Temperaturverteilung und 
der Wlrmestrom durch die Ober&he einer Platte fiir den Fall untersucht, daCi die konvektiv von 
unten gekiihlte Platte von einem Fluid iiberspiilt wird, dessen Freistromtemperatur an der AnstrGmkante 
regellos mit der Zeit schwankt und daD die thermische Antwort der Platte mit dem Fluid iiber die 
Vereinigungsbedingungen an der Zwischenschicht verkniipft ist. 

Zuerst wird die Liisung fiir eine Sprungfunktion ermittelt und diese dann verallgemeinert, urn eine 
regellose zeitliche Temperatursnderung zu behandeln. Eine einfach zu handhabende Niherungsmethode 
fiir den allgemeinen Fall wird angegeben, und zum Vergleich werden such quasi-stationgre Ergebnisse 

ermittelt. 

HECTAlJMOHAPHbIti TEnJlOO6MEH MExflY KKMfiKOCTbtO C flEPEMEHHOCi 
TEMilEPATYPOti M nJIACTMHOti. TO’4HOE PEUIEHME 

AHHorauHR-C McrrOnb3oBaHMeM npeo6pasosaHMn nanflaca npoBeneH aHanM3 HeCTauMOHapHOrO 

paC”,,eDeneHMR TeMnepaTypbl M TelTnOBOrO FIOTOKa Ha nOBepXHOCTM nnfi C>ly’iaR 06TeKaHHn KOH- 

BeKTk,BHO OXna~RaeMOti CHM3y nnaCTMHbl )KMLtKOCTbtO, TeMIIepaTypa CBO6OnHOrO nOToKa KOTOpOk 

y IIepeLlHeit KpOMKM IlpOM3BOnbHO M3MeHfleTCII C Te’leHMeM BpeMeHM, Korna TennoBaR peaKukfn 

TmaCTMHbl onpenennexfl ycnosMnMM ConpnxeHkin Ha rpaHt+ue pa3nena. no.lyretio peueHwe n.7~ 

CTytIeHGiTOfi tiZI)‘HKUMII TeMIlepaTypbl, KOTOpOe 3aTeM o606tUaeTcn fl.lR !7pOll3BOJlbHblX M3MeHeHMti 

TeMnepaTypbl CO BpeMeHeM. npMMep ilCllO~b30BaHH~ npM6.‘llWeHHOrO MeTOL,a npeDCTaB.leH U.lR 

Haw6onee o6luero Cny’tafi. &In C,,aBHeHMfl nOny4eHbl TaK)l(e KBa3MCTaUMOHa~7Hble pely!lbTaTbl. 


